

Preparation and Corrosion Resistance of NiFe_2O_4 - NiCr_2O_4 Composite Ceramic-Based Inert Anodes

Jing Li¹, Shengzhong Bao², Menghan Shi³, Changlin Li⁴ and Lifen Luo⁵

1, 3. Intermediate Engineers

5. Senior Engineer

2, 4. Professor level Senior Engineers

Zhengzhou Non-ferrous Metals Research Institute of Chalco (ZRI), Zhengzhou, China

Corresponding author: sz_bao@chinalco.com.cn

<https://doi.org/10.71659/icsoba2025-el001>

Abstract

DOWNLOAD

The new aluminum electrolysis technology with inert anodes and TiB_2 wettable cathodes is one of the important pathways for the aluminum electrolysis industry to achieve its carbon neutrality goals. The NiFe_2O_4 -based cermet inert anodes have obvious comprehensive performance advantages. However, improving its corrosion resistance while balancing electrical conductivity and thermal shock resistance remains one of the main research directions at present. In this paper, Cr_2O_3 was introduced to prepare a NiFe_2O_4 - NiCr_2O_4 composite ceramic, which was then fabricated into a cermet inert anode. Subsequently, static corrosion tests and 20 A electrolysis tests were conducted. The results showed that the corrosion resistance of the NiFe_2O_4 - NiCr_2O_4 composite ceramic inert anode has significantly improved compared with the cermet inert anode based on traditional pure NiFe_2O_4 ceramic. Moreover, a stable and protective film layer could be formed during the electrolysis process under powered conditions.

Keywords: Inert anode, NiFe_2O_4 - NiCr_2O_4 composite ceramics, NiFe_2O_4 -based cermet, Corrosion resistance.

1. Introduction

Aluminum electrolysis technology with inert anodes can fundamentally address the issue of the release of CO_2 , PFC, and CO_2 gases from the consumption of traditional carbon anodes during electrolysis. Particularly, NiFe_2O_4 -based cermet integrates the corrosion resistance of the ceramic phase and the electrical conductivity of the metallic phase based on spinel-type ceramic materials by incorporating the metallic phase to improve the brittleness and electrical conductivity. In recent years, NiFe_2O_4 -based cermet has been recognized as the most promising inert electrode material system. However, under the molten salt electrolysis conditions in the aluminum electrolysis (960 °C, Na_3AlF_6 - Al_2O_3 molten salt), gradual corrosion of the anode materials and selective dissolution of some metallic elements are still critical problems limiting its life [1].

In recent years, significant progress has been made in the research of inert electrode materials for aluminum electrolysis, and material preparation has also scaled up from small-scale laboratory research to medium- and large-scale industrial application research [2–5]. Since Alcoa announced that a 17 % Cu-42.91 % NiO -40.09 % Fe_2O_3 inert anode (referred to as 5324-17Cu) features good electrical conductivity and corrosion resistance [6], M/ NiFe_2O_4 -based cermet has been regarded as the most promising inert anode material. Cermet with a ceramic phase of NiFe_2O_4 + 10NiO and a metallic phase M of binary or ternary alloy primarily composed of Cu, Ni, and Fe has been extensively studied. Research on cermet-based anode materials mainly focuses on the following aspects: first, enhancing the density of the material by optimizing sintering preparation processes; second, enhancing the corrosion resistance and electrical conductivity of the material by optimizing ceramic phase and metallic phase; third, conducting theoretical research from aspects such as electrical conductivity and corrosion mechanisms. With respect to optimization of ceramic

phase, the primary research direction involves introducing a secondary ceramic phase or oxide addition and conducting electrolytic corrosion test to investigate the changes in the phase structure and composition of the material and evaluate their effects on sintering densification, strength, microstructure, electrical conductivity, corrosion resistance, thermal shock resistance, etc., so as to identify the optimal secondary ceramic phase or added oxides and their content. NiO, TiN, ZrB₂, REO, CoO, MnO, SnO₂, V₂O₅, ZrO₂ and the like have all been used as additives [7–16].

Cr, characterized by excellent corrosion resistance, can form a thin and dense oxide film in an oxidation environment, with self-repairability. This study focuses on the ceramic phase. By introducing the secondary ceramic phase NiCr₂O₄ into the traditional NiFe₂O₄, the original NiFe₂O₄ single-phase ceramic is optimized into a NiFe₂O₄-NiCr₂O₄ composite ceramic. In addition, the influence of this optimization on the corrosion resistance of anode material is investigated. The experiment adopted a two-step sintering process to prepare NiFe₂O₄-NiCr₂O₄ composite ceramic, and a cold-pressing sintering process to prepare the inert anode materials required for the experiment to investigate the influence of the introduction of the secondary phase NiCr₂O₄ on the sintering performance, microstructure and film-forming property under electrolysis in low-temperature bath of (Cu-Ni-Fe)-NiFe₂O₄-based cermet, with the aim of improving the performance of inert anode materials for aluminum electrolysis.

2. Methodology

2.1 Sample Preparation

Raw materials used in the experiment: NiO, Fe₂O₃, Cu, Ni, and Cr₂O₃ were analytically pure. A two-step sintering process was adopted for the preparation of NiFe₂O₄-NiCr₂O₄ composite ceramic. First, NiFe₂O₄-NiCr₂O₄ composite ceramic raw material powder was pre-synthesized via a high-temperature solid-phase synthesis method. The synthesized powder was mixed with a binder, ball-milled, dried, molded under pressure, and then sintered into bulk materials for use in static chemical corrosion and electrolysis experiments. First, NiO, Fe₂O₃, and Cr₂O₃ were weighed in a molar ratio of 1:0.8:0.2, respectively, and mixed uniformly using a ball mill, with deionized water as the grinding medium. The mixture was dried in an oven, crushed, and sieved. After the obtained mixed powder was placed in a corundum crucible and calcined at 1000 °C under an air atmosphere for 6 hours in a muffle furnace, 80 %NiFe₂O₄-20 %NiCr₂O₄ceramic powder was obtained. The synthesized powder was crushed, mixed with deionized water as a dispersant, 1.5 % PVA as a binder, and ball-milled. The dried powder was molded into \varnothing 45 mm \times 0.5 mm circular green blocks on the four-column hydraulic press under a pressure of 200 MPa. The green blocks were sintered at 1250 °C under an air atmosphere for 4 h. The sintered samples were subject to performance testing and static corrosion experiments. The synthesized metal powder and the composite ceramic product were mixed in a mass fraction of 3:7 to prepare the (Cu52Ni30Fe18) and (80 % NiFe₂O₄-20 % NiCr₂O₄-10NiO) cermet mixed powder, mixed with deionized water as a dispersant, and 1.5 %PVA as a binder, and ball-milled. The dried powder was molded into 75 \times 48 \times 10 mm green blocks under a pressure of 200 MPa. The green blocks were sintered at 1250 °C under N₂ atmosphere for 4 h to obtain electrolysis experiment samples. The sintered samples were subject to performance testing and 20 A electrolysis experiment for corrosion resistance testing. Simultaneously, pure NiFe₂O₄ and 30(Cu52Ni30Fe18)-70NiFe₂O₄ samples were prepared for contrast experiments.

2.2 Static Chemical Corrosion Experiment

The chemical corrosion experiment used a low-temperature electrolyte mainly composed of NaF-KF-AlF₃. The experimental temperature was set at 800 °C. Circular sintered samples were immersed in the electrolyte which was placed in an alumina crucible with fixed capacity for 24 h

bath penetration into the bulk layer, indicating that the formed film layer has a certain protective effect.

Overall: NiFe₂O₄-NiCr₂O₄ composite cermet can form a protective film layer in the bath, resulting from in-situ oxidation and expansion of the ceramic phase and the metallic phase. The corrosion layer formed by penetration of a small amount of electrolyte and the bulk layer without corrosion of electrolyte indicates that although a film layer has been formed, it is required to improve and enhance the resistance to corrosion of electrolyte and molten salt for the NiFe₂O₄-NiCr₂O₄ composite cermet under powered conditions.

4. Conclusion

- (1) NiFe₂O₄-NiCr₂O₄ composite ceramic powder with high purity can be synthesized by mixing NiO, Fe₂O₃ and Cr₂O₃ in a molar ratio of 1:0.8:0.2 and holding the mixture at 1000 °C for 6 hours under an air atmosphere.
- (2) The incorporation of NiCr₂O₄ phase in the ceramic phase can enhance the static corrosion resistance of NiFe₂O₄-based anode materials in the NaF-KF-AlF₃ low-temperature bath system, as the film layer formed on its surface is relatively dense.
- (3) After the electrolysis test of NiFe₂O₄-NiCr₂O₄ composite cermet, although a complete film layer can be formed in terms of microstructure, it is necessary to improve the resistance to bath corrosion of the film layer.

5. References

1. Yong He et al., Recent progress of inert anodes for carbon-free aluminium electrolysis: a review and outlook, *Journal of Materials Chemistry A*, 2021, Issue 45, 25272-25285. <https://doi.org/10.1039/d1ta07198j>
2. Kaibin Chen, et al., Research Progress on Inert Anode Materials for Aluminum Electrolysis. *TMS-Light Metals* 2025, 850–857. https://doi.org/10.1007/978-3-031-80676-6_106
3. Liao Xianan et al. Review on current major carbon-free aluminum reduction technology. *Light Metals*, 2019(3):1-4 (in Chinese).
4. Kaibin Chen, et al., Research progress on inert anode materials and electrolytic technology for aluminum electrolysis, *China Nonferrous Metallurgy*, 2024, 53 (06):59–68. <https://doi.org/doi:10.19612/j.cnki.cn11-5066/tf.2024.06.007> (in Chinese)
5. Sai Krishna Padamata, et al., Review primary production of aluminium with oxygen evolving anodes, *Journal of The Electrochemical Society*, 2023, 170(7): 073501. <https://doi.org/10.1149/1945-7111/ace332>
6. J.D. Weyand, Manufacturing processes used for the production of inert anodes, *Light Metals*, 1986, 321–339.
7. Bin Wang, et al. Sintering behavior and fracture morphology of NiFe₂O₄/nano-TiN ceramics synthesized under argon atmosphere, *Journal of Materials Engineering and Performance*, 2020, 29(12): 7971–7980. <https://doi.org/10.1007/s11665-020-05009-z>
8. Zhigang Zhang and Jianrong Xu, Sintering kinetics and properties of NiFe₂O₄-based ceramics inert anodes doped with TiN nanoparticles. *International Journal of Applied Ceramic Technology*, 2023, 20(1): 329-340. <https://doi.org/10.1111/ijac.14231>
9. Zhiyou Li, et al., A highly corrosion-resistant cermet inert anode material for aluminum electrolysis and its preparation method, *China Patent*, CN 113186569B, Submitted on July 30, 2021, Authorized on March 5, 2024 (in Chinese). <https://patents.google.com/patent/CN113186569B/zh>

10. Hanbing He et al., *A ZrB₂-based cermet inert anode and its preparation method and application*: China Patent, CN1159476 02B, Submitted on April 11, 2023, Authorized on March 5, 2024 (in Chinese). <https://patents.google.com/patent/CN115947602A/zh>
11. Yuqiang Tao et al., Conductivity and corrosion resistance of Yb₂O₃ or Y₂O₃-Doped Cu-(NiFe₂O₄-10NiO) inert anode, *The Chinese Journal of Nonferrous Metals*, 2011, 21(5): 1137–1144 (in Chinese).
12. Haiming Wu et al., Effect of CoO doping on the conductivity of 15(20Ni-Cu)/(NiO-NiFe₂O₄) cermet, *Materials Science and Engineering of Powder Metallurgy*, 2011, 16(2): 206–211 (in Chinese).
13. Wei Wang et al., Effect of ceramic phase doping on the performance of inert anode materials for aluminum electrolysis. *The Chinese Journal of Nonferrous Metals*, 25(6), 1653-1658. (in Chinese).
14. Zhang Xiao, et al., The influence of ZrO₂ on the properties of NiFe₂O₄-based cermet inert anodes. // *National Doctoral Academic Annual Conference*. China Association for Science and Technology; Office of the Academic Degrees Committee of the State Council, 2012. (in Chinese)
15. Lin Qiquan, et al. Effect of La₂O₃ doping on microstructure and properties of cermets. *Journal of the Chinese Ceramic Society*, 2014,(12): 1537-1542. (in Chinese).
16. Ana-Maria Popescu, Oxygen-evolving SnO₂-based Ceramic Anodes in Aluminium Electrolysis, *Chemical Research in Chinese Universities*, 2014, Volume 30(5): 800-805. <http://doi.org/10.1007/s40242-014-4137-4>